External Barriers of the Body
Prior to its uptake into the blood (i.e.,
during absorption), a drug has to over-
come barriers that demarcate the body
from its surroundings, i.e., separate the
internal milieu from the external mi-
lieu. These boundaries are formed by
the skin and mucous membranes.
When absorption takes place in the
gut (enteral absorption), the intestinal
epithelium is the barrier. This single-
layered epithelium is made up of ente-
rocytes and mucus-producing goblet
cells. On their luminal side, these cells
are joined together by zonulae occlu-
dentes(indicated by black dots in the in-
set, bottom left). A zonula occludens or
tight junction is a region in which the
phospholipid membranes of two cells
establish close contact and become
joined via integral membrane proteins
(semicircular inset, left center). The re-
gion of fusion surrounds each cell like a
ring, so that neighboring cells are weld-
ed together in a continuous belt. In this
manner, an unbroken phospholipid
layer is formed (yellow area in the sche-
matic drawing, bottom left) and acts as
a continuous barrier between the two
spaces separated by the cell layer – in
the case of the gut, the intestinal lumen
(dark blue) and the interstitial space
(light blue). The efficiency with which
such a barrier restricts exchange of sub-
stances can be increased by arranging
these occluding junctions in multiple
arrays, as for instance in the endotheli-
um of cerebral blood vessels. The con-
necting proteins (connexins) further-
more serve to restrict mixing of other
functional membrane proteins (ion
pumps, ion channels) that occupy spe-
cific areas of the cell membrane.
This phospholipid bilayer repre-
sents the intestinal mucosa-blood bar-
rier that a drug must cross during its en-
teral absorption. Eligible drugs are those
whose physicochemical properties al-
low permeation through the lipophilic
membrane interior (yellow) or that are
subject to a special carrier transport
mechanism. Absorption of such drugs
proceeds rapidly, because the absorbing
surface is greatly enlarged due to the
formation of the epithelial brush border
(submicroscopic foldings of the plasma-
lemma). The absorbability of a drug is
characterized by the absorption quo-
tient, that is, the amount absorbed di-
vided by the amount in the gut available
for absorption.
In the respiratory tract, cilia-bear-
ing epithelial cells are also joined on the
luminal side by zonulae occludentes, so
that the bronchial space and the inter-
stitium are separated by a continuous
phospholipid barrier.
With sublingual or buccal applica-
tion, a drug encounters the non-kerati-
nized, multilayered squamous epitheli-
um of the oral mucosa. Here, the cells
establish punctate contacts with each
other in the form of desmosomes (not
shown); however, these do not seal the
intercellular clefts. Instead, the cells
have the property of sequestering phos-
pholipid-containing membrane frag-
ments that assemble into layers within
the extracellular space (semicircular in-
set, center right). In this manner, a con-
tinuous phospholipid barrier arises also
inside squamous epithelia, although at
an extracellular location, unlike that of
intestinal epithelia. A similar barrier
principle operates in the multilayered
keratinized squamous epithelium of the
outer skin. The presence of a continu-
ous phospholipid layer means that
squamous epithelia will permit passage
of lipophilic drugs only, i.e., agents ca-
pable of diffusing through phospholipid
membranes, with the epithelial thick-
ness determining the extent and speed
of absorption. In addition, cutaneous ab-
sorption is impeded by the keratin
layer, the stratum corneum, which is
very unevenly developed in various are-
as of the skin.
22 Distribution in the Body
All rights reserved. Usage subject to terms and conditions of license.