In the late 18th and early 19th centuries, François Magendie and later his student Claude Bernard
began to develop the methods of experimental animal physiology and pharmacology. Advances in
chemistry and the further development of physiology in the 18th, 19th, and early 20th centuries laid
the foundation needed for understanding how drugs work at the organ and tissue levels.
Paradoxically, real advances in basic pharmacology during this time were accompanied by an
outburst of unscientific promotion by manufacturers and marketers of worthless "patent medicines."
It was not until the concepts of rational therapeutics, especially that of the controlled clinical trial,
were reintroduced into medicine—about 50 years ago—that it became possible to accurately
evaluate therapeutic claims.
About 50 years ago, there also began a major expansion of research efforts in all areas of biology.
As new concepts and new techniques were introduced, information accumulated about drug action
and the biologic substrate of that action, the receptor. During the last half-century, many
fundamentally new drug groups and new members of old groups were introduced. The last 3
decades have seen an even more rapid growth of information and understanding of the molecular
basis for drug action. The molecular mechanisms of action of many drugs have now been identified,
and numerous receptors have been isolated, structurally characterized, and cloned. In fact, the use of
receptor identification methods (described in Chapter 2: Drug Receptors & Pharmacodynamics) has
led to the discovery of many orphan receptors—receptors for which no ligand has been discovered
and whose function can only be surmised. Studies of the local molecular environment of receptors
have shown that receptors and effectors do not function in isolation—they are strongly influenced
by companion regulatory proteins. Decoding of the genomes of many species—from bacteria to
humans—has led to the recognition of unsuspected relationships between receptor families.
Pharmacogenomics—the relation of the individual's genetic makeup to his or her response to
specific drugs—is close to becoming a practical area of therapy (see Pharmacology & Genetics).
Much of that progress is summarized in this resource.
The extension of scientific principles into everyday therapeutics is still going on, though the
medication-consuming public, unfortunately, is still exposed to vast amounts of inaccurate,
incomplete, or unscientific information regarding the pharmacologic effects of chemicals. This has
resulted in the faddish use of innumerable expensive, ineffective, and sometimes harmful remedies
and the growth of a huge "alternative health care" industry. Conversely, lack of understanding of
basic scientific principles in biology and statistics and the absence of critical thinking about public
health issues has led to rejection of medical science by a segment of the public and a common
tendency to assume that all adverse drug effects are the result of malpractice. Two general
principles that the student should always remember are, first, that all substances can under certain
circumstances be toxic; and second, that all therapies promoted as health-enhancing should meet the
same standards of evidence of efficacy and safety, ie, there should be no artificial separation
between scientific medicine and "alternative" or "complementary" medicine.
Pharmacology & Genetics
During the last 5 years, the genomes of humans, mice, and many other organisms have been
decoded in considerable detail. This has opened the door to a remarkable range of new approaches
to research and treatment. It has been known for centuries that certain diseases are inherited, and we
now understand that individuals with such diseases have a heritable abnormality in their DNA. It is
now possible in the case of some inherited diseases to define exactly which DNA base pairs are
anomalous and in which chromosome they appear. In a small number of animal models of such
diseases, it has been possible to correct the abnormality by "gene therapy," ie, insertion of an
appropriate "healthy" gene into somatic cells. Human somatic cell gene therapy has been attempted,
but the technical difficulties are great.